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Abstract

The explanation for the difference between simulation and the zero-order theory

for heterodyne lidar returns in a turbulent atmosphere proposed by Belmonte and

Rye [Appl. Opt. 39, 2401, (2000)] is incorrect. The theoretica] expansion is not

developed under a square-law-structure function approximation (random wedge atmo-

sphere). Agreement between the simulations and the zero-order term of the theoretical

expansion is produced for the limit of statistically independent paths (bi-static opera-

tion with large transmitter-receiver separation) when the simulations correctly include

the large-scale gradients of the turbulent atmosphere.

1 Introduction

The effects of refractive turbulence on heterodyne or coherent Doppler lidar have been in-

vestigated by theoretical methods [1, 2, 3, 4, 5] and numerical simulations [6, 7, 8, 9, 10].

The theoretical results are important for verification of the simulation algorithms and for

calculations in parameter regimes where simulations are not feasible such as conditions of

large path-integrated refractive turbulence (strong scattering). The two methods are com-

plementary and the valid parameter space for each method is a critical issue for evaluation

of Doppler lidar performance.



The most important statistical quantity is the signal-to-noise ratio (SNR) which can be

written as [4, l l]

SNR(R) cx C(R) (1)

for diffuse or aerosol targets at range R where C(R) is the coherent responsivity which is

given by

?C(R) = ,X2 < jT(P, R)jBVLO(P, R) > dp
C2_

(2)

where A is the laser wavelength, jT(P, R) and jBPLO(P, R) are the random intensities of the

transmit and back-propagated local oscillator (BPLO) beam, respectively, <> denotes en-

semble average over the random refractive turbulence and the random phases of the backscat-

tered fields at the target, and p denotes the two-dimensional transverse coordinate at the

target. Here, jT(P, R) = leT(P, R)] 2 and jBPLO(P, R) : ]eBPLO(P, /_)[2 where

FeT(p,R) = eL(U,O)WT(u)G(p;u,R)du
oo

(3)

FeBPLO(P, R) = e_o(U, O)Wn(u)G(p; u, R)du
O0

(4)

and eL(u, 0) is the normalized laser transmit field at the transmit telescope aperture WT(U),

eLO(U, 0) is the normalized LO field at the receiver telescope aperture WR(u), and G(p; u, R)

is the Green's function for propagating the fields through a random atmosphere under the

Fresnel approximation which can be written as a Feynman path integral [4, 12, 13, 14].

Combining these equations produces [4]

? f?? f?f? • • uC(R) = O)er(U ,O)esvLo(U ,O) ,pLO( O)
OC O0 O0 O0 OC

F4 (p, ul, ua, ua, u4, R)duldu2duadu4dp (5)

where

F4(p, ul,uu,ua, u4, R) =< G(p;ul,R)O*(p;ua, R)G(p, ua, R)G (p, u4, R) > (6)

is the fourth moment Greens function for wave propagation through the random atmosphere.

For typical atmospheric conditions, there is no exact solution for F4 and various approxima-

tions and series expansions have been produced. One of the most basic series expansions is

a Taylor series expansion.

Another attractive option is to numerically simulate many realizations of the random

intensity on the target and determine C(R) from Eq. (2). This method has been success-

fully employed for many problems of wave propagation in random media [15, 16, 17, 19].

For coherent Doppler lidar applications, the results generally disagree with the first order

term of the theoretical expansions [6, 7, 8] because higher-order terms of the expansion are

important (these higher-order terms are numerically intensive and difficult to calculate [5]).
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An explanationproposedby BelmonteandRye [7] for the disagreementof the simulations
and approximationsto the zero-ordertheory is that the seriesexpansionis only valid for
a square-law-structurefunctionrandomatmosphere.This is incorrectbecausesuchan at-
mosphereconsistsof a seriesof randomwedgeswhichwouldproduceonly beamtilts and
thereforehavethe sameperformanceas freespace[20]. With this interpretation and a
simulationbasedon anapproximationfor a randomwedgeatmosphere,Belmonteand Rye
claimedagreementbetweenthesimulationsand approximationsto thezero-ordertheoretical
expansionfor thecaseof statisticallyindependentpaths(e.g.,bistaticoperationwith a large
separationbetweenthe transmitter andreceiversuchthat the transmit and receivepaths
experiencestatisticallyindependentturbulence).Wewill showthat this is an incorrectinter-
pretationand that agreementisproducedfor typicalatmosphericconditionsfor thebistatic
limit of the zero-orderterm of the serie.sexpansion,andwewill clarify the procedureused
to generatethe seriesexpansion.

2 Theory

The key quantity ['4 can be written under the Markov approximation and narrow angular

scattering as [14]

r4(p, ul,u2, ua, u4, R) = G!(p, ui, R) f Dr, f Dr2 f Dra f Dr4

exp{- - + d(r - r ,z) + - r ,z) +
d(r_ - ra, z) - d(rl - ra, z) - d(r2 - r4, z)]dz} (7)

where Gf(p, ui, R) is the free-space result,

d(s,R)=4rk 2 [1-cos(s.q)]_n(q_,%,q_=O,R)dq
co

(s)

q = (q_., %), and (I)n(q_., q_, qz, R) is the three-dimensional spectrum of refractive index fluc-
tuations at range R, and Drl denotes the infinite number of paths rt(z) from the transmitter-

receiver plane z ----0 with ri(0) = ul to the target plane z = R with ri(R) = p. The Markov

approximation is equivalent to replacing the random atmosphere by a series of statistically

independent random refractive index screens transverse to the propagation direction and is

an excellent approximation for intensity statistics such as F4 [21]

For weak scattering conditions which emphasize the low-spatial frequencies (lf) of the

scintillation process, the standard series expansion is a Taylor series of the quantity exp (-Q/2)

[14, 4] where Q -- f0n[d(rl-r4, z)+d(r2-ra, z)-d(rl-ra, z)-d(r_-r4, z)]dz. The zero-order

term is given by

C_I(R) = -_ OT(s,R)O*BPLo(S,R)exp[-Ds(s,R)]ds (9)
oo

where

j_0 RDs(s,R) = d[s(1 - z/R),z]dz (10)
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is the sphericalwavestructurefunction,

/?Or(s, R) = er(r + s/2, 0)e_,(r -- s/2, 0) exp(ikr • s/R)dr, (11)

and

//OBPLO(S,R) = euPLO(r + s/2,0)e*BPLO(r-s/2,0)exp(ikr's/R)dr.
Oo

This expression is the receiver plane version. The target plane version simplifies to [4]

(12)

£ClJ(R) = A2 < iT(P, R) >< jBPLO(P, R) > dp
CO

(13)

which contains the product of the average normalized intensity of the transmit and BPLO

fields at the target (the statistically independent path result). This expansion was pre.sented

in Ref. [4] with the following caution: "Note that our theory was not developed under a

square law structure function approximation. That pathological case corresponds to an at-

mosphere composed of random wedges [20], which implies there is only beam wander and

no scintillation, and wave-front tilts will be self correcting for monostatic lidar". Physi-

cally, the random-wedge atmosphere produces only random beam tilt which is the same for

the transmit and BPLO beams. Mathematically, substituting a square-law structure func-

tion d(r, z) = K(z)r 2 into Eq. (7) produces the free-space result GI(p, ul, R) because the

combination of structure functions in the exponential are identically zero.

A realistic model for the atmospheric spectrum is the Hill spectrum [22, 23]

¢n(q,z) = A C_(z) q-ll/a f[qlo(z)] (14)

where A = 0.0330054, q = Cq_ + q_ + q_ is the magnitude of the three dimensional wave

vector, C,2 is the refractive index structure constant, l0 is the inner scale, and f(x) = (1.0 +

0.70937x + 2.8235x 2 - 0.28086x a + 0.08277x 4) exp(- 1.109x). The form of the spectrum at the

high wave-number region is critical for laser scintillation experiments. The Gaussian model

[24, 7] for f(x) produces errors for the scintillation intensity variance [25] which is related to

C(R) [4, 23]. For constant C,2 and l0 [26]

Ds(s) = 87r2AC_k21_/aR H(s/lo) (15)

where

1H(z) -- g(xz)dx (16)

_0 (x3
g(x) ---" q-S/af(q)[1 - Jo(qx)]dq

The field coherence length Po is defined by

Ds(po) = 1

4

(17)

(18)



anda usefulapproximationthat wewill callthesquare-lawstructurefunctionapproximation
for the seriesexpansion(not to beconfusedwith the square-lawstructurefunctionapproxi-
mationfor the randomatmosphereor equivalently,the"randomwedgeatmosphere")is

Ds(s) = s2/p_ (19)

which has been shown to have small error for calculations of the average beam intensity [1].

If P0 <</0, this is an very good approximation. The main motivation for this approximation

is analytic expressions for important quantities such as C(R) with a Gaussian lidar model

[1, 2, 4, 5].
For very strong scattering, the scintillation process consists of two components: a low-

spatial frequency (large scale) component and a high-spatial frequency (HF) component.

Therefore, another series expansion is required based on the high spatial-frequency (hf)

component of the scintillation [4, 14]. This expansion is a Taylor series in the quantity

exp(-Q/2) where Q = f0n[d(rl - r2, z) + d(ra - r,, z) - d(rl - re, z) - d(r2 - r,, z)]dz. For
monostatic lidar with matched transmit and BPLO beams, the first term C h! = C_oI [4] and

the total strong scattering expression is

Css(R) = + = 2C  (R) (20)

which is equivalent to the Gaussian fields assumption in strong scattering [14] and provides

the lower-bound to Doppler lidar performance.

3 Numerical Simulation

The effects of refractive turbulence will be determined for typical ground-based atmospheric

conditions using numerical simulations of the target plane intensity patterns jT(P, R) and

jBPLO(P, R) [see Eq. (2)]. The standard algorithm [7, 15, 16, 17] propagates the field through

a series of statistically independent random phase screens (the Markov approximation) which

are produced by the Fast Fourier Transform (FFT) algorithm. Because the phase screens

produced by the FFT algorithm are periodic, the spatial correlation is periodic and the sim-

ulation of the fields have errors for those statistics that are sensitive to large scale turbulent

fluctuations (see Fig. 1 of Ref. [6]). Improved algorithms for generating phase screens with

the correct large-scale statistics have been produced [6] using random sub-harmonics [18].

This algorithm (FFT-SH) has been applied to the simulation of wave propagation in random

media and heterodyne lidar performance [6, 8]. The large-scale phase perturbations have

been shown to produce a small effect for optimally-designed monostatic coherent Doppler

lidar [6]. The statistically independent path (bistatic operation) limit can be produced by

generating difference uncorrelated phase screens for the transmit and BPLO fields.

4 Results

The results of simulations and theory for the statistically independent path case (bistatic)

are shown in Fig. 1 for the same lidar parameters of Fig. 16 in Ref. [7] (circular telescope
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with diameterD = 0.14 m, matched transmit and BPLO Gaussian beams with 1/e intensity

radius O"L = O'LO = 0.2836D = 0.39704m, C_ = 10 -1_ m -2/3, 10 = 0.01 m, A = 2.O#m).

The results from the most robust simulation algorithm (FFT-SH) agree very well with the

exact calculation of the zero-order term Eq. (9). The results from the traditional simulation

algorithm (FFT) do not agree for large ranges because the large-scale tilts are not correctly

represented. This is shown in Fig. 7 of [10] where the average beam width from the tra-
ditional simulation is smaller than the theoretical calculation for ranges greater than 1000

m. The error is larger for the focused beam case [6]. The square-law structure function

approximation for the exponential expression of the zero-order term also has little error [see

Eqs. (9), (10), (19)]. This is to be expected because the coherence length P0 is less than the

inner scale 10 for all ranges greater than R = 200 m. The most likely explanations for the

disagreement in Figs. 16-21 of [7] are the assumption of a Gaussian transmittance profile

for the telescope aperture and the approximation of the the coherence length P0 Eq. (18) by

the zero inner-scale limit of the Kolmogorov spectrum [see Eq. (165) of [4]].

The results for monostatic operation are shown in Fig. 2. The results from both sim-

ulation algorithms agree (see also [6, 8]) and are considerably larger than the zero-order

strong-scattering theory. This is typical of intensity scintillation [15, 16, 19], especially with

an inner scale of turbulence. It is difficult to approach the theoretical strong-scattering limit

and therefore higher terms of the theoretical expansions are required. However, for the fo-

cused beam geometry and strong scattering, the simulation results converge more quickly to

the theoretical predictions [see Fig. 10 of [8]]. This is a parameter regime where improved

theoretical expansion could be valuable. With the development of stable coherent Doppler

lidar, the measurement of SNR for hard targets has become very accurate since the relative

accuracy from the speckle process is 1/v/N where N is the number of lidar shots processed.

It is important to have accurate predictions from theory and simulations to understand the

effects of refractive turbulence.

5 Summary and Discussion

The theoretical series expansion for SNR [C(R)] is produced as a Taylor series expansion and

does not assume a square-law structure function approximation for the random atmosphere

(random wedge atmosphere). It is difficult to evaluate the simulation results in [7] for

the random-wedge atmosphere approximated by a spatial spectrum with a power-law of-d

because the spatial statistics are not a square-law structure function and are not traditional

turbulence. In addition, the approximate analytic expressions for a Gaussian lidar [4] are

not valid for this spectrum.

The exact calculation of the zero-order term Eq. (9) of the theoretical expansion for

heterodyne SNR for the case of statistically independent paths for the transmit and BPLO

beams (bistatic lidar with large separation between the transmitter and receiver) agrees with

the robust simulation method (FFT-SH) (see Fig. l) and also agrees well with the square-

law structure function approximation to the exponential term of the expansion [see Eqs. (9),

(10), (19)]. The traditional simulation algorithm has errors because the large-scale phase
tilts are not calculated correctly and therefore this algorithm does not accurately predict

performance for bi-static operation and the improved FFT-SH algorithm is required.



For monostaticlidar (seeFig. 2), the resultsof the simulationsare larger than the
predictionsof the zero-ordertheory for weak-scatteringEq. (9) and alsostrong-scattering
(largerangeR) Eq. (20). This parameter regime requires more terms of the theoretical

expansion. Numerical simulation of lidar performance is an attractive method for those

parameter regimes where the simulations are valid. For other parameter regimes, better

theoretical expansions may be required for accurate predictions.
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Figure 1: Normalized coherent responsivity C(R)/C(O) versus range R for a coherent Doppler

lidar with statistically independent paths for the transmit and BPLO beams (bistatic limit).

The exact theoretical prediction (solid line) Eq. (9) and the square-law structure function

approximation (dashed line) [see Eqs. (9), (10), (19)] are compared with the results from

the robust simulation algorithm (FFT-SH) and the traditional simulation algorithm (FFT).

Figure 2: Normalized coherent responsivity C(R)/C(O) versus range R for a monostatic

coherent Doppler lidar. The zero-order term of the theoretical expansion for weak-scattering

(solid line) Eq. (9) and strong scattering (dashed line) Eq. (20) are compared with the results

from the robust simulation algorithm (FFT-SH) and the traditional simulation algorithm

(EFT).
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Figure 1 Frehlich and Kavaya
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Figure 2 Frehlich and Kavaya
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